Definisi Fishway
Fishway atau tangga ikan atau jalur ikan adalah gabungan elemen
(struktur, fasilitas, perangkat, operasi pemeliharaan, dan upaya atau tindakan)
yang diperlukan untuk memastikan pergerakan ikan yang aman, tepat waktu, dan
efektif melewati penghalang. Contohnya termasuk, tetapi tidak terbatas pada,
tangga ikan yang dapat diatur, lift
ikan, jalan pintas, perangkat pemandu, zona lintasan, aliran operasional, dan
penghentian suatu unit bangunan.
Istilah "fishway," "fish pass,"
atau "fish passageway" (dan
juga "eelway," "eel pass," atau "eel passageway") dapat
dipertukarkan. Namun, Rekayasa (Engineering)
merekomendasikan penggunaan istilah "fishway"
atau "eelway" karena
istilah tersebut konsisten dengan 16
U.S.C. § 811 (1994), yang berbunyi:
“Bahwa hal-hal yang dapat menjadi ‘tangga
ikan’ berdasarkan pasal 18 untuk tangga ikan yang aman dan tepat waktu di hulu
dan hilir harus dibatasi pada struktur, fasilitas, atau perangkat fisik yang
diperlukan untuk memelihara semua tahap kehidupan ikan tersebut, dan operasi
serta tindakan proyek yang terkait dengan struktur, fasilitas, atau perangkat
tersebut yang diperlukan untuk memastikan efektivitas struktur, fasilitas, atau
perangkat tersebut untuk ikan tersebut.”
Istilah " tangga ikan " atau
" tangga sidat" mengacu pada tindakan, proses, atau ilmu pengetahuan
untuk memindahkan ikan (atau sidat) melewati penghalang aliran sungai, misalnya
bendungan.
Zona Lintasan
Zone of Passage (ZOP) atau zona lintasan tangga ikan harus berada di area yang berdekatan yang berupa bentangan alam, baik lateral, longitudinal, dan vertikal yang cukup luas, di mana kondisi hidraulik dan lingkungannya memadai untuk dipertahankan guna menyediakan lintasan melalui aliran sungai yang dipengaruhi oleh bendungan atau penghalang aliran sungai.
Aman, Tepat Waktu, dan Efektif
Elemen tangga ikan dirancang dan dibangun untuk
menyediakan tangga ikan yang aman, tepat waktu, dan efektif.
Ketiga karakteristik didefinisikan seebagai
berikut :
- Jalur Aman: Pergerakan ikan melalui ZOP harus tidak mengakibatkan stres, cedera , atau kematian ikan (misalnya, karena tarikan turbin, benturan, dan bertambahnya pemangsa atau predator). Jika pergerakan melewati penghalang mengakibatkan kematian atau kondisi fisik yang mengganggu perilaku migrasi, pertumbuhan, atau reproduksi, hal ini tidak boleh dianggap sebagai jalur yang aman untuk tangga ikan.
- Jalur Tepat Waktu: Pergerakan ikan melalui ZOP harus berlangsung tanpa penundaan atau dampak yang signifikan secara material terhadap pola perilaku penting atau persyaratan riwayat hidup ikan.
- Jalur Efektif: Pergerakan target spesies yang melalui ZOP harus menghasilkan keselarasan yang menguntungkan antara desain struktural, operasi dan pemeliharaan, dan kondisi lingkungan selama satu atau beberapa periode utama. Efektivitas mencakup penilaian kualitatif (misalnya, integritas papan penahan kayu, pengaturan waktu siklus hopper) dan pengukuran kuantitatif. Istilah "efisiensi" (dan hiponimnya yaitu efisiensi lintasan dan efisiensi tarikan) dicadangkan untuk elemen kuantitatif efektivitas.
= Efisiensi: Ukuran kuantitatif dari proporsi populasi yang termotivasi untuk melewati penghalang (yaitu, populasi yang termotivasi) yang berhasil bergerak melalui seluruh ZOP; biasanya dinyatakan sebagai produk dari efisiensi tarikan dan lintasan.
= Efisiensi Tarikan: Ukuran proporsi populasi (yang termotivasi) yang berhasil tertarik ke jalur ikan; biasanya diukur sebagai persentase dari populasi termotivasi yang menemukan dan memasuki jalur ikan.
= Efisiensi Lintasan: Ukuran proporsi ikan yang memasuki jalur ikan yang juga berhasil melewati jalur ikan; keberhasilan melewati jalur ikan biasanya diukur di pintu keluar jalur ikan; juga disebut sebagai "efisiensi jalur ikan internal."
Sumber United States Fish and Wildlife Service Region 5 FISH PASSAGE ENGINEERING DESIGN CRITERIA, Juni 2019, Manual ini menggantikan semua edisi sebelumnya dari Fish Passage Engineering Design Criteria yang diterbitkan oleh U.S. Fish and Wildlife Service Region 5)



Fish swimming performance database
and analyses
Fish swimming performance database
and analyses
Fish swimming speed
Swimming speeds in fish
1
Swimming speeds in fish
2
Swimming speed in underwater
Swimspeeds and energy use of
upriver-migrating
Observations on the swimming speeds
of fish
Swimming speed performance
Scaling thetail beat frequency and
swimming speed in underwater undulatory swimming
A Method for Estimating the Velocity …. Swimming Fish
Swim Performance Online Tools
Swim Speed & Swim Time Tool
Fluid Mechanics of Fish Swimming
Downstream Fish Passage Facilities
Migration dynamics simulation of migratory fish in rivers
Designing
artificial roughness
in a water channel involves strategically creating surface irregularities to
modify flow characteristics. This is often done to reduce velocity, increase
mixing, or improve heat transfer. The design process typically involves
selecting appropriate roughness elements, determining their size, shape, and
spacing, and considering the impact on the overall hydraulic performance of the
channel.
Here's a more detailed breakdown of
the design process:
1. Defining the Purpose and Objectives:
Artificial roughness can be used to decrease water velocity, which is helpful in areas where high velocities can cause erosion or damage.
Introducing roughness can improve mixing of the water, which can be beneficial for certain processes like heat transfer or aeration.
Roughness can enhance heat transfer by increasing the surface area and disrupting the boundary layer, leading to more efficient heat transfer in solar collectors or other applications.
The design must be tailored to the specific application. For instance, a stilling basin requires a different roughness design than a solar air collector.
2. Choosing Roughness Elements:
Artificial roughness can take many forms, including granular roughness (e.g., stones, pebbles), discrete roughness elements (e.g., cubes, plates), or geometric features (e.g., corrugations, fins).
The roughness elements should be made of durable materials that are resistant to water flow and erosion.
The shape and size of the roughness elements will affect their impact on flow. For example, cubic roughness elements will behave differently than T-shaped roughness elements.
3. Determining Roughness Size and Spacing:
This refers to the height of the roughness elements relative to the channel bed.
The distance between the roughness elements can be expressed in terms of the roughness height (e/s) or the hydraulic radius (R/s).
Different spacing configurations can affect the flow regime, with different spacing ratios leading to different hydraulic behaviors.
4. Hydraulic Calculations and Modeling:
This equation can be used to estimate the flow velocity and discharge in the channel with artificial roughness.
These dimensionless numbers can be used to characterize the flow regime and determine whether it is laminar or turbulent.
Computational Fluid Dynamics (CFD) Simulations:
CFD can provide detailed simulations of flow behavior over artificial roughness, allowing for a more precise design.
5. Experimental Validation:
Conducting laboratory experiments with scaled models can help validate the design and refine the roughness parameters.
Full-scale field testing can be used to verify the design and assess its performance in real-world conditions.
6. Optimization and Refinement:
The design process can be iterative, with adjustments made based on experimental results and simulations.
In some cases, it may be necessary to optimize the design based on multiple objectives, such as minimizing erosion and maximizing heat transfer.
7. Specific Considerations:
Stilling basins require a careful design of artificial roughness to dissipate energy and prevent erosion.
Artificial roughness can be used to enhance heat transfer in solar air collectors, with different roughness geometries leading to different performance.
By carefully considering these factors and using appropriate design tools, it's possible to create artificial roughness that effectively modifies flow characteristics in water channels for various applications.
Calculating bed load transport in steep boulder bed channels
Experimental study of the energy dissipation on rough ramps
An experimental study: effects of boulder placement on hydraulic metrics of instream habitat complexity
The hydraulics of a vertical slot fishway: A case study on the multi-species Vianney-Legendre fishway in Quebec, Canada
Hydraulics of the Vianney‐Legendre vertical slot fishway near St. Ours, Quebec
Hydraulics analysis of rock ramp fishway
Hydraulic of rock-ramp fishway with lateral slope
Hydraulic Analysis of a Novel Fish Passage-Way
The Case of the Miyanaka Intake Dam in Japan
Fish Passes Design, Dimensions and Monitoring
Fish Passes Design, Dimensions and Monitoring
Fish Pass Design for Eel and Elver
Desing of Fishways & Others Fish Facilities
Introduction to Fishway Design
Fishway design toolkits
From sea to source
Fish friendly Irrigation
Taku Masumoto
Design of upstream fish passage systems
The importance of design in river fishways
Pool Fishways, Pre-Barrages and Natural Bypass Channels
Sabo dam
Groundsill K. Opak
The completed HEC-RAS
example model can be downloaded by clicking on the below button.
Download HEC-RAS Fish Ladder Model
Tags: Fish Ladders, Fish Passage, Fishways, HEC-RAS, HEC-RAS tutorial, StreamStats